Low-Density Lipoprotein Receptor (LDLR) Family Orchestrates Cholesterol Homeostasis
نویسندگان
چکیده
The LDLR family of proteins is involved in lipoproteins trafficking. While the role of LDLR in cardiovascular disease has been widely studied, only recently the role of other members of the LDLR proteins in lipoprotein homeostasis and atherosclerosis has emerged. LDLR, VLDLR, and LRPs bind and internalize apoE- and apoB-containing lipoprotein, including LDL and VLDL, and regulate their cellular uptake. LRP6 is a unique member of this family for its function as a co-receptor for Wnt signal transduction. The work in our laboratory has shown that LRP6 also plays a key role in lipoprotein and TG clearance, glucose homoeostasis, and atherosclerosis. The role of these receptor proteins in pathogenesis of diverse metabolic risk factors is emerging, rendering them targets of novel therapeutics for metabolic syndrome and atherosclerosis. This manuscript reviews the physiological role of the LDLR family of proteins and describes its involvement in pathogenesis of hyperlipidemia and atherosclerosis.
منابع مشابه
Familial Hypercholesterolemia in Iran: A Novel Frameshift Mutation in Low Density Lipoprotein Receptor (LDLR) Gene
Background and Objective: Familial hypercholesterolemia (FH) is an autosomal trait, which is caused by mutations in Low Density Lipoprotein Receptor (LDLR) gene. FH penetrance is about 100% and worldwide prevalence for heterozygous subjects is almost 1 in 500 and for homozygous 1 in 1,000,000. The patients are at risk of premature coronary heart disease (CHD) due to defective LDLR a...
متن کاملA common polymorphism decreases low-density lipoprotein receptor exon 12 splicing efficiency and associates with increased cholesterol.
Single nucleotide polymorphisms (SNPs) that alter exon splicing efficiency are an emerging class of functional genetic variants. Since mutations in low-density lipoprotein receptor (LDLR) are a primary cause of familial hypercholesterolemia, we evaluated whether LDLR SNPs may alter splicing efficiency and cholesterol homeostasis. A SNP within LDLR exon 12, rs688, was identified in silico as neu...
متن کاملInflammation and skin cholesterol in LDLr-/-, apoA-I-/- mice: link between cholesterol homeostasis and self-tolerance?
Diet-fed low density lipoprotein receptor-deficient/apolipoprotein A-I-deficient (LDLr-/-, apoA-I-/-) mice accumulate a 10-fold greater mass of cholesterol in their skin despite a 1.5- to 2-fold lower plasma cholesterol concentration compared with diet-fed LDLr-/- mice. The accumulation of cholesterol predominantly in the skin has been shown to occur in a growing number of other hypercholestero...
متن کاملThe ATP-binding cassette transporter-2 (ABCA2) regulates cholesterol homeostasis and low-density lipoprotein receptor metabolism in N2a neuroblastoma cells.
The ATP-binding cassette transporter-2 (ABCA2) has been identified as a possible regulator of lipid metabolism. ABCA2 is most highly expressed in the brain but its effects on cholesterol homeostasis in neuronal-type cells have not been characterized. It is important to study the role of ABCA2 in regulating cholesterol homeostasis in neuronal-type cells because ABCA2 has been identified as a pos...
متن کاملProprotein Convertase Subtilisin/Kexin Type 9: From the Discovery to the Development of New Therapies for Cardiovascular Diseases
The identification of the HMG-CoA reductase inhibitors, statins, has represented a dramatic innovation of the pharmacological modulation of hypercholesterolemia and associated cardiovascular diseases. However, not all patients receiving statins achieve guideline-recommended low density lipoprotein (LDL) cholesterol goals, particularly those at high risk. There remains, therefore, an unmet medic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 85 شماره
صفحات -
تاریخ انتشار 2012